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EXPERIMENTAL

Precision measurements of volume versus pressure for one meter long

potassium specimens have been successfully carried out up to a hydrostatic

pressure of 7 kbar. The length change of the specimen has been measured to
0

an accuracy of better than 500 A using a He-Ne laser interferometer in a

temperature controlled environment with temperature variations ±O.0010C at

28.580C.

Extensive work was required to grow these large single crystals of a

reactive material and considerable work was needed to develop techniques for

handling these large, reactive, compliant and weak crystals. The successful

growth of this crystal can only be described as a tour de force. It took us

much longer than expected because it was much harder than expected.

Potassium immersed in a mineral oil environment inside a 5 gallon pail was

purchased from Mine Safety Appliance Corporation, Evans City, PA, with a 99.95%

purity. It was transferred from the 5 gallon pail into an extrusion vessel

specially made for handling potassium. Since potassium, like other alkali

metals, is very soft and oxidizes rapidly in moisture and air, transfer was

made directly into the extrusion vessel filled with liquid hexane which had

been previously purified and dehydrated by keeping it in the container with a

large amount of potassium chips under slight pressure of ultra high purity

argon gas. Then the extrusion was carried out into a pyrex glass tube which

was also filled with pre-purified liquid hexane to a desired length (about

130 cm long) using a 7.9 mm die. This extruded potassium was zone-refined

several times to enhance purity and anneal-out defects and some of the dis-

locations. It was then finally transferred to our length measurement pressure

vessel. Liquid hexane, purified as described above, was used as a pressurizing

medium.
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Our data have been analyzed by a special non-linear least square fit of

various equations of state to obtain the isothermal bulk modulus and its

pressure derivatives at atmospheric pressure.

The first order Murnaghan equation (ME,) which assumes that all pressure

derivatives of the bulk modulus at zero pressure beyond the first are zero, the

second order Murnaghan equation (ME2 ), two parameter Birch equation (BE1 ),

three parameter Birch equation (BE2), and Keene equation yield the follow-

ing results listed in Table I below.

Table I. Bulk modulus and its pressure derivatives for potassium
at 28.580C.

Equation Bo  Bo 1

Used (kbar) Bo' (kbar)

ME1  31.01±0.02 3.905±0.009

ME2  30.87±0.01 4.094±0.018 -0.0747±0.0068

BE1  30.85±0.01 4.144±0.003 -0.131±0.002

BE2  30.85±0.02 4.151±0.021 -0.135±0.01

KE 30.84 0.02 4.159±0.024 -0.145±0.014

In the above table, B0 , B0' and Bo are the values of bulk modulus, its

first pressure derivative, and its second pressure derivative, taken at atmos-

pheric pressure, respectively. The above data are to be compared with

Swenson's values [C. E. Monfort and C. A. Swenson, J. Phys. Chem. Solids 26,

291 (1965)] obtained by the piston-cylinder method and Smith's ultrasonic

measurements [P. A. Smith and C. B. Smith, J. Phys. Chem. Solids 26, 279

(1965)]. %heir data were fitted by ME1 which is based on the assumption

that B =B + B 'P, and yield

B(kbars) = 30.8 + 3.85 P (Swenson)

B(kbars) = 30.9 + 3.98 P (Smith)
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The manner of fitting is itself very important; note how Bo of our data changes

when ME2 is used rather than ME1 . Thus Swenson's B.' would be increased from

3.85 if ME2 or other higher order equations were used. It is quite exciting

to see that our values for B are in excellent agreement with those obtained

by Swenson and Smith and that the Bo' values are close. It should be noted

that various theories of binding show that the Maclauren series for B(P) in-

volves alternating signs for the derivatives, with B0' positive, Bo" negative,

etc. Hence the use of ME1 will give a lower bound on Bo' and an upper bound

on B0 , because of the neglect of the negative Bo"P2/2 term. Similarly, the

use of ME2 should give a lower bound on JBo"1, an upper bound on Bo' and a

lower bound on B0 . Thus we can expect from our results alone: 30.86 1 B0 i 31.03

and 3.90 : B ' 5 4.11. These results have been published.
0

The second pressure derivative of the bulk modulus, B0 , exhibits some

dispersion and uncertainty around the value of -0.l(kbar) " , depending on the

equation of state used, as shown in Table I. This is expected from the fact

that B " involves a third derivative taken from the pressure-volume data. The

meaningful determination of Bo" requires not only an extremely accurate

volume measurement with an error AV/V o  10-6, as pointed out by Macdonald and

Powell [J. R. Macdonald and D. R. Powell, J. Res. NBS 25A, 441 (1971)], but

also an equal accuracy in the pressure measurements, as indicated by Kim,

Chhabildas and Ruoff [K. Y. Kim, L. C. Chhabildas and A. L. Ruoff, J. Appl.

Phys. 47, 2862 (1976)]. The former condition is certainly fulfilled in our

volume measurement, but the latter is extremely difficult to meet in the

laboratory.

The Grover, Getting, Kennedy equation [R. Grover, I. C. Getting and

G. C. Kennedy, Phys. Rev. 7, B 567 (1973)] has been proposed as a two parameter

equation involving 8o and B0'. Higher derivatives of the bulk modulus are not

zero but can be directly determined from B and B0'; we find

4-- -4
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Bo= - BJ

B , (GGK)

which gives BO O -0.54. This is too large by a factor of four to seven;

thus GGK is incorrect on a physical basis (just as ME1 is); nonetheless both

equations have some practical use.

Instead of trying to meet the latter condition, the accuracy of B" can

be improved, as far as pressure is concerned by extending the applied pressure

range up to pressure equal to B (kbars) of a specimen or even beyond. A

potassium crystal has B. = 30 kbar. A 30 kbar vessel was constructed to

carry our length measurements out to this pressure.

The overall view of a 30 kbar vessel is displayed in Figure 1. The two

stage pressure vessel design has been adopted to generate a maximum pressure

of 30 kbar in the bore of the inner vessel. These vessels were made of a

non-magnetic titanium alloy, the product of Reactive Metal Corporation,

RMI 38-6-44. The commonly used manganin wire pressure sensor and anew type

of pressure sensor built with a chip size stable Zener diode have been construc-

ted and were tested in order to accurately calibrate and measure pressure up

to 30 kbar. Improved feed-through of the electrical leads into 30 kbar

vessel has been devised to electrically detect the change under pressure.

Unfortunately, the contract was not renewed and came to an end just as

the vessel was being installed and tested.
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Publication

1. K. Y. Kim and A. L. Ruoff, 'Isothermal Equations of State of Potassium",

J. Appi. Phys. 52, 245 (1981).



-7-

THEORETICAL

I: Equilibrium and Transport Properties

The major emphasis of the early part of the theoretical program centered

on the equation of state and transport properties of both potassium and

aluminum. The objective of the program had been to study the suitability of

the simple metals as possible monitors of pressure in ultra-pressure

environments. Under such conditions it is likely that resistivity can be

measured, and for this reason we concentrated our attention on electrical

transport properties. These are usually calculated as functions of volume,

whereas the quantity of most practical significance is the resistivity (or

resistance) as a function of pressure. It is therefore necessary to know the

equation of state of the metal, particularly under conditions of high

compression. As described in the original proposal, we pursued this aim on a

metal with relatively low bulk modulus; potassium has a zero pressure bulk

modulus Bo of 30 Kbar and we examined the theoretical equation of state

at pressures far in excess of 30 Kbar. The ability of the current theory of

the metallic state to describe the equation of state of a metal for pressure

greater than Bo in a soft metal (such as potassium) was taken as evidence

that the same theory would be successful in describing a simple metal, such

as aluminum, with a much higher bulk modulus.

These two metals do differ, however, in an important respect. The ions

of aluminum are compact and very tightly bound. In comparison, the ions of

potassium are more extended and less tightly bound electronically. As a

4 _ _ _ _ __ _ _ _ _
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consequence, core-polarization effects in potassium cannot be neglected in an

accurate determination of the equation of state. Thus in our detailed study

(1) we re-examined the theory of the ground state energy of simple metals and

included the electron-electron interaction effects between localized core-

states. This meant modifying the method of structural expansions (2,3) to

include the effects of core-polarization fluctuations. It is well known that

in insulating systems such fluctuations lead to Van der Waals interactions at

long range. In a metal, however, these interactions are screened by the

valence electrons, and since the processes involved are dynamic, the screen-

ing requires a knowledge of the frequency dependent dielectric function of

the interaction electron gas. That even the screened Van der Waals interac-

tions in potassium are appreciable at high pressures can be attributed to the

fact that the polarizability of the potassium ion is rather substantial. The

results (1,4) showed that although it is reasonable to ignore core-

polarization at low pressure (P < 10 Kbar) they become progressively more

important at higher pressures; for example, they contribute about 15 Kbar

(out of approximately 60) at 40% compression (5).

In addition to the question of the equation of state we also examined

quite closely the behavior of the high temperature resistivity of aluminum

under pressure (6). To minimize errors as much as possible, we considered

the scaled resistivity, i.e., p(P)/p(P=O), by determining p from a standard

variational treatment of the Boltzmann equation in which the necessary elec-

tron levels and distortion of the actual Fermi surface were obtained from a

replicated two plane-wave model. The scaled resistivity that resulted

displayed a very clear minimum (6) at a pressure of about 25 GPa. We were

able to understand this behavior in terms of the increasing importance of

A __



-9-

distortions to the Fermi surface as pressure itself increased. In this

respect, the results for the crystal are very different from those we

obtained (7) for liquid aluminum which possesses a spherical Fermi surface.

And since the distortions to the Fermi surface in the crystal reflect the

changes in pseudopotential with density, the behavior among different

crystalline simple metals is also quite varied (we predict lead to have a

p(P) rather different from that found in Al).

II: GrUneisen Parameter and Dynamically Compressed Metals

A major part of the theory component concerned the direct study of the

Gr~neisen parameter, the quantity required in reducing the shock data to iso-

thermal conditions. To obtain this quantity with precision we required, as

functions of temperature and volume, the bulk modulus, the heat capacity, and

the coefficient of volume expansion.

As described above we made some advances in understanding the equation

of state of potassium at high density, our major interest was directed toward

the T = 0 isotherm. Subsequently we examined the contribution of the phonons

to the free energy of a model solid using the method of self-consistent

phonon theory (7). This approach allows us to build in the effects of the

most important anharmonicities, and while these are reasonably small effects

at low temperatures, they become increasingly important at high temperatures

(for instance, in the conditions prevailing in shock experiments). Another

method we developed (and are currently improving) gives a different approach

to the problem. In this new method (9) the thermodynamic properties of

simple solids at high pressures are calculated from liquid state thermo-

* dynamics by treating the solid as a super-cooled liquid. In particular,* I
- - ..- -* -t~w _
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we are able to obtain the energy and pressure at arbitrary temperatures and

densities via expressijns that are reasonably simple functionals of the pair

potential. As ar application of this principle, we have started to analyze

shock-wave data via liquid state thermodynamics. For example, we can use

shock-wave data directly as a test of a given pair potential without resort-

ing to the usual techniques for "reduction of the Hugoniot." Alternatively,

the method can be used to perform the reduction of a shock Hugoniot by

selecting from a general space of pair potentials the one that best fits the

known equilibrium thermodynamic quantities and the Hugoniot curve. The

resulting pair interaction can subsequently be used to generate zero tempera-

ture data thereby also performing a "reduction."

III: Interatomic Forces in Transition Metals

We extended our early work supported by the grant on simple metals to

transition metals to the extent that their electronic structure could be

reasonably well described by the tight binding approximation. In particular,

we derived a new method (10) for calculating the interatomic potentials that

can be attributed to band broadening contributions to the metallic cohesive

energy. Our method was based on the direct evaluation in r-space of the

moments of the electronic density of states, but projected on a particular

atom. We applied it to tight-binding model Hamiltonians appropriate to

either one- or five-states per atom. In the latter case, which is appro-

priate to the d-orbitals in transition metals, the resulting interatomic

potentials have spatial forms rather characteristic of fluctuating multipole

forces. The band broadening contributions are attractive: the expected

short-range repulsive contributions are obtained by expanding the energy
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to second order in atomic orbital overlaps. The combination of attractive

and repulsive contributions forms the basis of our method for calculating the

thermodynamic functions in the transition metals and parallels the nearly

free electron approach we used in the simple metals. So far, we have applied

the method to the study of vacancy formation energies.

IV: Electron Distributions Around Charge Centers in Solids

Finally, in the course of studying pair and multi-center interactions in

solids, we were led to consider the nature of electron distributions around

point charges in many-body systems. We managed to prove a cusp theorem (11)

which relates the zero-separation value and slope of two-particle positional

correlation functions in quantum many-body systems with Coulombic interac-

tions. The theorem is independent of particle type and symmetry of the

wave-function. Our proof uses only the integral form of the Schr6dinger

equation and continuity and long-range exponential decay of the wave func-

tion. We have used the theorem to derive a sum-rule for the electron gas

structure factor, and an exact statement about the screening of point

charges.

- - - - - n- - --
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Isothermal equations of state of potassium
Kwang Yul Kim and Arthur L. Ruoff
Department of Materials Science and Engineering. Cornell University. Ithaca, New York 14853
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Volume versus pressure data of I-m-long polycrystalline potassium has been obtained as a
function of hydrostatic pressure up to 7 kbars at 28.58 *C. The length change has been measured
to an accuracy of less than 500 A using a Fabry-Perot type He-Ne laser interferometer in a
temperature-controlled environment with temperature variations ± 0.001 *C. The isothermal
bulk modulus B, and its pressure derivative B at atmospheric pressure and 28.58 "C are
B, = 31.01 + 0.02 kbars and B, = 3.91 ± 0.01, when the first-order Murnaghan equation is
used; and Bu = 30.84 + 0.02 kbars and B 0 4.16 ± 0.02, when the Keane equation is used. The
Keane equation yields B g = - 0.145 kbar -' in the applied pressure range. Various two- and
three-parameter equations of state have been used to fit the measured pressure-volume data. The
Keane and Birch equations represent the data most closely when these equations are extrapolated
into a higher-pressure region.

PACS numbers: 64.30. + t, 64.10. + h, 62.50.+ p

INTRODUCTION Although most of those measurements made by the
above workers are quite adequate to describe thermodynam-Potassium and the other alkali metals have drawn con-

siderable theoretical interest. The measurement of their ic behaviors at high pressures, they are not precise enough tothermodynamic properties is helpful in understanding the derive reliable higher-order pressure derivatives of bulk mo-

cohesion of simple metals. However, their mechanical soft- dulus, such as B o( or higher. The potassium crystal is an
ness and strong chemical reactivity have made these mea- extremely soft solid with B, , 30 kbars and B ,7 is expected to
surements very unattractive, since extreme care must be tak- contribute appreciably to the value of B at higher pressures.
en in handling these materials. Accurate measurements of adiabatic bulk modulus by

Earlier measurements of volume compression of alkali the ultrasonic method have been made by Smith and his
metals were carried out by Bridgman" - up to 100 kbars. The coworkers.' The ultrasonic method yields adiabatic data
pressure scale hc used in a higher-pressure region turned out which, if isothermal results are desired, must be converted
to deviate appreciably from the present pressure scale. Swen- by resorting to Overton's relation.' The Overton formulas
son and his coworkers"6 measured volume change up to 20 involve a number of parameters, all of which are not accu-
kbars over a temperature range down to liquid-helium tern- rately determined in the desired pressure range.
perature. Kennedy and his collaborators7 have measured the Given our precise length change measurements with
pressure-volume isotherms up to 45 kbars. Both of the above resolution better than 500 A for a I-m-long potassium speci-
authors used the piston-cylinder device, But the quasihy- men. Bo, B ,, and B (, have been determined by statistically
drostatic media and corrections due to the piston compres- fitting the data to several isothermal equations of state. A
sion and friction contribute to errors in their measurements. detailed treatment and discriminations between these equa-
Our present measurements are under purely hydrostatic tions have been described by Macdonald and his cowork-
conditions. ers. -" Macdonald and Powell' I have shown that it is statis-

Let Vdenote the volume of a specimen under pressure P tically insignificnat to discriminate the equations of state in a
and at some constant temperature T. Then an isothermal
bulk modulus B is defined and expanded in terms of pressure T,,.m Do,,,,m T,

as
avsB= -V OV 5P-

= Bo + B, )(P - P,,) + IB 0"'(P - P(,)2 + .. 1

where

Bo V , B 0 = , io 40 lB

and
(.3'B FIG. I. Schematic orlength measurement system. I: laser path vacuum

.P bellows, 2: laser beam. 3: interferometer mirrors. 4: coupling plates. 5:dp 2LVDT's. 6: pressure vessel. 7: specimen. 8: magnetic cores, 9: stainless-steel
are evaluated at atmospheric pressure Po. tube. 10: Pyrex glass tube.

245 J. Appl. Phys. 52(1), January 1981 0021-8979/81/0245-05S01,0. ® 1981 Ametan lnstitut of Physics 245
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.0 long and 7.9 mm in diameter was inserted in a tube, which inrdgman(3, l-corrected turn is held inside the 12.7-mm-diam bore of the nonmagne-
a : Monfort and Svenson E63 tic titanium alloy pressure vessel. The central portion of the
A Kennedy et ol E73

aRice E183 tube is 304 stainless steel and the remaining part of the tube,
Shock Wove Data (Liquid) where the magnetic cores of the linear variable differential

0.8 ........ KE transformer (LVDT) are slightly spring-loaded against both

-.- BEi ends of the potassium specimen, is a Pyrex glass tube which
Bis used to avoid any spurious magnetic effects on the H-

shaped magnetic cores.
Potassium was obtained from Mine Safety Appliance

Corporation and is 99.95% pure. This was extruded into a
7.9-mm die to the desired length. It is then zone refined sev-

eral times to enhance purity and to anneal out defects and
>- ME Usome dislocations. A more elaborate ball bushing arrange-

0.4" ment for holding the specimen to minimize friction was pre-
-' ,' viously used.' 2" 4 This was not adopted in this experiment,

because the small difference in density between potassium
and the pressurizing medium (liquid hexane) keeps friction

sufficiently small. Dehydrated liquid hexane is used as the
0.2- pressure fluid. Pressure was measured by using a manganin

wire pressure sensor. The calibrating technique of the man-
ganin gauge is described in detail elsewhere.'"

The length measurements were made at an interval of
00 ,300 bars up to a maximum pressure of 7 kbars. Inasmuch as

000 200 300 the linear compressibility of polycrystalline potassium is iso-
Pressure (kbors) tropic, volume measurements are obtained, using the rela-

FIG. 2. Extrapolation of pressure-volume data for potassium. Bridgman's tion V/V = (1/o)3. Resolution in the length measurements

pressure scale correction above 35 kbars, 40-.38 kbars, 60-56 kbars, of the He-Ne laser interferometry is better than 300 A in the
80-70 khars, and 100-.84 kbars. The shock data are for liquid metal, temperature stabilized environment with thermal noise of

0.001 *C.
low-pressure region (P/Bo<0.0) unless the experimental The LVDT electronics, laser interferometer, coupling
data are very accurate within an error ofA V/Vo< l0- . The plates and their translation motion, and temperature con-
precision in our length change measurement is better than trol, etc., have been described in detail in the literature.' 2

5 X 10-8 and P/Bo<0.25.
DATA ANALYSIS

EXPERIMENTAL METHOD For notational convenience, we shall introduce the fol-

A detailed description of the experimental setup has lowing abbreviations: p = P - P, 71= B ;, I' = B,8 ;',
been provided by Lincoln and Ruoff.'2 As shown in Fig. 1, a z = P/Bo, and x = Vo/V. Note that 7j, 4P, z, and x are all
polycrystalline potassium rod which is approximately I m dimensionless quantities. Po is assumed to be I bar in this

.4

TABLE 1. Various equations of state.

Equation Acronym Form

First-order ME, z =x- I( l -
Mumaghan , (~

a 2 j '/  
)[v:- 2)14

Second-order MF,
M u ua g la n ( q / > 2 0 ) X ( ( 

/ ' q lI 
+ j ) -

( Q l2 
2 * 

1 )  
/ 2 _ )

Keane KE z = [ 'p/( it' + 01J]
( - 7, < < 0) X Ix 11, + 0", _ 1) - [0/0, + 0)] Inc

First-order BE, Z = 0X
7
13 _ X113)[I + J( 9 - 4Xx2/ 3 - 1)]

Birch

Second-order BE, z = l[x /, - X ..]11I + (9 - 4X x713 - 1)

Birch + A[ 143 + 9V( t- 7) + 901(x 2 /3 - 1 21
Grover GGKCE B Br xp[vfl - x- ')]

Getting.
Kennedy

246 J. Appl. Phys., Vol. 52, No. 1, January 1981 K.Y. Kkil and A. L. Ruoff 246
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TABLE It. Bulk modulus and its pressure derivatives for potassium at 28.58 *C.

Equation B0  B
Used (kbar) B; (kbar -1)

ME, 31.01 0.02 3.905 0.009 0
ME, 30.87 ± 0.01 4.094 + 0.018 - 0.0747 ± 0.0068
GGKE 30.81 ±0.01 4.184 ±0.004 - 0.568± 0.001
BE, 30.85 0.01 4.144 0.003 - 0.131± 0.002

BE 2  30.85 ±0.02 4.151 ±0.021 - 0.135 ±0.010

KE 30.84 ± 0.02 4.159 ± 0.024 - 0.145 ± 0.014

'Obtained from Bo and B.

paper. Several of the two- and three-parameter phenomolo- 1Bo'(--P)

gical equations described in detail elsewhere'0 "' 6 are used to Bo B ( . (6)
fit the pressure-volume data and are listed in Table 1. where

Table II shows the values of the bulk modulus and its where

pressure derivatives obtained by fitting the measured pres- B -B (7)
sure volume data into the equations of state listed in Table 1. 0 . 8P" IP = Po
ME, is the only equation of state in the list for which B' is The values ofB o and B ("I for N= 1, 2, and 3 are displayed in
zero. The expressions for BE, and GGKE do not explicitly Table III.
contain the parameter B g; however, this does not imply that As expected, ME, in Table 11 and N = I in Table III,
B " is identically zero. The appropriate expression for B " in yield essentially the same result for Bo and B o, and ME, in
the case of BE, can be obtained by setting the third term in Table 11 and N = 2 in Table III also show essentially the
the second-order Birch equation BE 2 equal to zero. The re- same result for B0, B ;, and B ', within experimental errors,
suit is respectively. This provides a self-consistency check for ME,

9BoB  = - [ 143 + 9B L (Bo - 7)]. (2) and ME,. It is interesting to notice that N = 3 inTable III

Successively diffierentiating the GGKE equation with re- provides almost identical results for Bo, B 0, and B to those
which BE, and KE yield (Table 11). Note that the neglect of

spect to pressure and taking the limit as P-Po,, one obtains y
B B' in ME, leads to a B o value which is too small.

BoB B = - B 1 (3) Table IV shows the data of bulk modulus and its pres-

GGKE, along with several other equations of state, fits the sure derivatives measured by other authors together with the
pressure-volume data well. However, a low value ofB 0 (30.8 present work for the sake of comparison. The agreement in
kbars) gives an unreasonably high value ofBg, as expected B.' is only adequate when compared with Bridgman and
from Eq. (3). Kennedy's static compression data, but Bo and B ' are in

Another approach for the determination of the bulk good agreement with Swenson's static compression data and
modulus at each pressure point is to combine three neighbor- Smith's values obtained by the ultrasonic technique.
ing data points and fit them into ME,. That is.

f V , dP DISCUSSION

., f B, + B(P - P,) (4) As can be seen in Tables II and IV, the two- and three-
V Pparameters equations yield virtually identical results for Bo,

V =f. dP (5) and values of B , obtained from GGKE, BE,, BE2, and KE

V B, + B ,(P - P) are also in good agreement. Although any sign of curvature

Out of the two relations (4) and (5), B, and B: have been is hardly noticeable in the ultrasonic mesurementsofB (P) vs
numerically calculated at each pressure point (except P = Po P for potassium," the three-parameter equations (ME 2, BE,,
and P = Pm..). These bulk modulus versus pressure data are K E) show unmistakably a negative value of B " = - 0. 1
statistically fitted, using the formula kbar -. Anderson'7 used Swenson's value s," for B0 and B ,

TABLE Ill. Values of B, and 85"' for N = 1. 2. and 3.

a,, a.57;

N (kbar) B;, (kbar 'I (kbar-l

I 31.06 ± 0.05 3.88 ± 0.02 0 0
2 30.86 0.04 4.09 0.03 - 0.073 ±0.010 0
3 30.81 ±0.05 4.18 ±0.08 - 0.145 ±0.063 0.024±0.021

'Because of the large standard deviation amocated with B,' and the much larger standard deviation associated with B,' than with the N = 2 case. the
numbers in this row should not he given great significance.
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TABLE IV. Isothermal bulk modulus and its pressure derivatives of potassium (equation used: ME,, ME 2, ME,).

Temperature B0 B; B;'
Source (IC) (kbar) B; (kbar - ' (kbar '1

Bridgman' Room 33.25 3.43
Swenson' 25" 30.8 3.85
Smithm I Room 30.9 3.98
Kennedy' Room 34.0 2.99

Room 31.2 3.65 -0.039
This workb 28.58 31.01 3.91

28.58 30.87 4.09 -0.075
28.58 30.81 4.18 - 0.145 0.024

'Corrected to an isothermal value from ultrasonic data.
'See comment in Table III regarding last row of data.

taken at low pressures on the solid and chose B which can over an extended pressure range will certainly contribute to
best fit the shock wave data' 5 (which is for the liquid)taken at improving data in the determination of B and B '.
higher pressures, using the Keane equation. He obtained the

values of B g = - 0.051 kbar for potassium and B "' CONCLUSIONS
= - 0.031 kbar-' for sodium. Similar procedures have The value of B,, for potassium at 28.58 °C is

been used by Fritz and Thurson " by using a different type of 30.85 ± 0.05 kbars.
extrapolation formula. Their values of B." are - 0.018 The value of B for potassium at 28.58 °C is 4.1 + 0.1.
kbar for potassium and 0.024 kbar-' for sodium. Consid- B,,' is found to beB _ - 0. 1 kbar ' and hence makes
ering that this involves mixing shock data on the liquid with a major contribution to the value of B at high pressures. It
low-pressure isothermal data on the solids, these values of appears that theTaylor series expansion ofB (P) about atmo-
B g; should not be taken seriously, spheric pressure is a slowly converging series. This is consis-

The value ofB 'g shows very sensitive dependence not tent with the general conclusions of Davison and Graham25

only on the accuracy of the V/Vo measurement, as pointed that fourth-order elastic constants contribute significantly
out by MacDonald and Powell," but also on the functional to the stress-strain response even at strains of only a few per
form of the variation of pressure with the change in resis- cent.
tance per unit resistance dR /Ro of the manganin gauge, as
indicated in the data of LiF and NaCI.' "4 Our pressure ACKNOWLEDGMENTS
measurements are known to a precision of 1 X 10-. Unless

the pressure is measured to an extremely high precision of Financial support by the United States Army Research
I X 10-', the error in B * is going to remain relatively large office is acknowledged. It is our pleasure to express our deep
unless the measurements are made to substantially higher gratitude to Robert E. Terry for his able technical support.
pressure.

The extrapolation of the pressure-volume data into a
higher-pressure range is displayed in Fig. 2 in order to see the
discrepancies between the equations of state, despite the 'P. W. Bridgman, Proc. Am. Acad. Arts Sci. 58. 165 (1923).

'P. W. Bridgman. Proc. Am. Acad. Arts Sci. 70. 71 (1935).
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reported values of pressure transition points of various ele- 'C. A. Swenson. Phys. Rev. 99. 423 (1955).
ments. ' His values of thallium 11-Ill at 39 kbars, barium 11- C. E. Monfort and C. A. Swenson, J. Phys. Chem. Solids 26.291 (1%5l.

'S. N. Vaidya, i. C. Getting, and G.C. Kennedy, J. Phys. Chem. Solids 32.
III at 59 kbars, and bismuth Ill-V at 89 kbars, moved down 2545 (1971).

to 37,21 55,22 and 74-78 kbars2 2 4 respectively. GGKE has *P. A. Smith and C. S. Smith, J. Phys. Chem. Solids 26.279 (1965).
not been shown because of its unrealistically high value of "W. C., Overton, Jr., J. Chem. Phys. 37, 116(1962).
B'. As shown in Fig. 2, ME, and ME, begin to deviate "T'. R. Macdonald. Rev. Mod. Phys. 41. 316 (1969).

"). R. Macdonald and D. R. Powell, J. Res. Nat. Bur. Stand. Sect. A 7.441
appreciably from other equations of state at 30 kbars. The (1971).
abnormal behavior of ME, in the higher-pressure region is "R. C. Lincoln and A. L. Ruoff. Rev. Sci. Instrum. 47.636 (1976.
due to the dominant role of a B (, term in the determination "K. Y. Kim, L. C. Chhabildas. and A. L. Ruoff. J. Appl. Phys. 47. 2862

(1976).
of B (P). KE, BE,, and BE, are hardly distinguishable in the "L. C. Chhabildas and A. L. Ruoff. J. Appl. Phys. 47, 4182119761.
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ley (Academic. New York. 19631 Vol. I. p. 227.be desirable to simultaneously measure pressure-volume "0. L. Anderson, Phys. Earth Planet. Interiors 1, 169 (19681.
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The scaled room-temperature resistivity [p(p)/p(p = 0)] of crystalline aluminum is calculated as a function
of pressure p. Initially the resistivity is determined as a function of volume from the standard variational
treatment in which the required electron levels and distortions to the Fermi surface are described in a two-
plane-wave model. To obtain the resistivity as a function of pressure, the results of this calculation arc
combined with a previously computed equation of state aluminum. The calculated scaled resistivity then
shows a minimum at a pressure of about 25 GPa. This minimum is largely attributable to the increasing
importance of distortions of the actual Fermi surface as pressure increases.

I. INTRODUCTION discussed in Sec. II, it is largely for this reason
that we find it convenient to use the simplest form

The electronic structure of aluminum is rela- of trial function. Within this approximation it
tively simple. Its bands have a largely free-elec- still remains to determine the behavior of the
tron-like character and can be interpolated quite pseudopotential r, the band structure, and the
accurately by a spatially local pseudopotential. Fermi surface as functions of volume. This is de-
On the other hand its Fermi surface is a complex scribed in Sec. III. The piecewise two-plane-wave
multiply connected object that is sensitive to the approximation that we use in evaluating the varia-
choice of the pseudopotential components used to tional integrals is described in Sec. IV. The ma-
interpolate the band structure. Since the trans- trix elements appearing in the integrand also re-
port coefficients, and in particular the resistivity, quire the phonon frequencies and their volume de-
are related to integrals over the Fermi surface, pendences, a question that is taken up both in
one might expect this sensitivity to become ap- Secs. IV and V. The additional approximations
parent if, as through the application of pressure, we make in order to complete the numerical pro-
the pseudopotential coefficients are altered. As cedures are described in more detail in Sec. IV.
we shall see below, this is indeed partly the case, They involve certain simplifications in the Fermi-
though in crystalline aluminum the pressure de- surface geometry and in the description of the
pendence of resistivity turns out to be an aggre- electronic levels associated with that geometry.
gate of some partially compensating effects. This The results are discussed in Sec. VI.
compensation is very much a property of the me- The calculations we report could be performed
tal itself (in Pb, for example, the effects we dis- in principle for all simple metals. We have se-
cuss should be more prominent) and also of its lected aluminum for the reasons given earlier,'
state (in solid aluminum the effects are far more namely that its high electron density and small ion
noticeable than in the liquid state'), core imply an ability to sustain a high pressure

We are concerned in this paper (as in Ref. 1) without core contact. In addition, the equation of
with the scaled room-temperature resistivity state of Al has been calculated to pressures in
p (p) 'p(p =0) of crystalline Al, at a pressure p. excess of 300 GPa (3 Mbar). This information al-
The natural quantity to calculate is the ratio lows us to convert from p(V)/p(11.) to p(p)/p(p =0)
p(I) 'p(i'o), where V is the volume of a sample and hence arrive at the curves described in
at pressure p (and 1'. its value at p = 0). The start- Sec. V.
ing point of this calculation is the well-known var-
iational expression2 for a bound on p(1, as de- II. RESISTIVITY OF SIMPLE METALS
scribed in Sec. II. For metals with complicated
Fermi surfaces, the necessary computations gen- ora etal of valencetzmatheestandard yiaria
erally require numerical procedures of matching tional reduction of the Boltzmann equation yields
comple.'ty, even for relatively simple choices of for the resistivity at high temperatures the x-
the variational trial function. The result for p(V) presson
can certainly be expected to depend on this choice a 112r Z25 -
as well as on approximations made necessary for P 7I 7 [Jd 2 .x, Tt t(,rf(T)j ]a 1
wholly numerical reasons. Much of the conse-luent
uncertainty can, however, be reduced by focusing

attention on the scaled quantity p(0l/p(0') and, as where

0 20 2991 F 1979 The American Physical Society
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where
[I/Var L (m) P "I fdsr v) (6)

X 1), x, _-3) (3Z, IVW IS!) 12 "lop =0oy(6

hdefines the optical effective mass which can be
Here 4' is the trial function used in obtaining the calculated directly." In (6) so is the area of the
bound for p, k, is the magnitude of the Fermi free-electron Fermi surface (so 4yke). Atten-
wave vector, v, is the Fermi velocity, &, is the tion then reverts to the remaining double surface
Fermi energy, P= 1/kT, M is the mass of an ion, integral in 1, which we shall treat in a two-plane-
and w,\ and ?, refer to the frequency and polariza- wave approximation. Were the Fermi surface

tion of phonons with reduced wave vector 1. We spherical, a one-plane-wave treatment would suf-
use scaled wave vectors R=/2ki, and a scaled fice and the identity
pseudopotential w = ,/11,, where -I,. is the ds; s,
known long-wavelength limit of the pseudopoten- f fds
tial form factor. The quantity a/f/e 2 is the atomic ' S

unit of resistivity and has the value 21.7 /zfcm. =dk d'6(k-kF)6(k'-k,) (7)
In the one-plane-wave approximation the quantity .

I in (1) can be written reduces the problem to a single volume integral
2 over = - IR'. With these simplifying features the

211 .m.= d 2 [2 ) 4'(x )2 calculation of the resistivity in the alkali metalsVI LrF V21vF •
is itself relatively simple. In the polyvalent metals,

X1V -2)jZS( 1 , ) (2) however, transformation (7) will not correctly

where S(Rx,S 2 ) is the one-phonon structure which treat transitions involving parts of the Fermi sur-

takes the form face that depart from a simple spherical charac-
ter. On the other hand (as we shall see) there are

S() =S R 2 =2(,-). j)]2 portions of the actual Fermi surface that remain
K very spherical and contributions from these can

x sinh'[ f wA,(X)], be transformed into a corresponding volume inte-

(3) gral. The remaining (nonspherical) portions

The sum in (3) is over the possible polarizations must, however, be treated by evaluating (1) direct-

A, and the integral is over the actual Fermi sur- ly.

face which in the case of the alkali metals, for ex-
ample, can be very well approximated by a sphere. I1. PSEUDOPOTENTIAL AND FERMI-SURFACE
For the polyvalent metals, however, the shape of GEOMETRY
the Fermi surface must be taken into account In the two-plane-wave approximation to be dis-
since a substantial fraction of the free-electron cussed in Sec. IV, the electronic energy S for level
Fermi surface can actually be lost.Feri h aee on aore calcuctual e lat in ok is given near zone planes by the solutions ofIt has been shown",5 that for the calculation of

high-temperature resistivity the effects of aniso- IIT- V( =0, (8)
tropy in the choice of trial functions are of dimin- V 6(K) R- = (
ishing importance. As a consequence of this ob-

servation we have used a trial function of the form where R is the reciprocal-lattice vector under
(4) consideration and S; = 0I/2,n)k'. V,(R) is related

to the screened pseudopotential v,(R) by 11 (R)
(where 2 is parallel to the electric field) rec- fl'v,(K), where -10 is the volume of the primitive
ognizing that although the calculated resistivity cell: by choice V'(0) =0.
must necessarily be in excess of the actual value, In order to calculate the resistivity we need to
the effect of the approximation on p(p)/p(O), as know the form of the pseudopotential v,(k) through-
noted earlier, will be much reduced. Although this out the range 0 s; k 4 2k.. For aluminum, a one-
choice for 4 greatly simplifies the numerical parameter empty-core potential serves adequate-
work, a generalization to more complex forms for ly. 7 In k space it can be written (with x-k/2k,
4, is quite straightforward, and s =2k.re)

Given (4) as the trial function then for a cubicsystem, () becomes I.(x) -- ) X cos(sx). (9) .
P- ~ 2 ,- t= Z oil

4?---k,, in /$.1 '( Here r, is the parameter usually referred to as

42 k ... )... " I
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the "empty-core radius." The value of r; should dependence is expected to be small since r, re-
be close to the size of the ion core on physical flects the size of the ion core which should not
grounds and is around 1.12ao for aluminum. For change greatly with pressure-induced changes in
the dielectric function (x), we takes its environment. Holding r, fixed is tantamount

((x) = I H(x)[I - G(x), to ignoring such small additional energy depen-
dence.

with With the "new" values of V,(11) and V,(200)
(vaokp 'i( lu- 1+(for the compressed metal) we can use (8) againH(x) I n(a'-)- 1 '

) =I Inl - xl (10) to map out the Fermi surface. Because of the dif-2 xferent values of the new Fourier coefficients, theand geometry of the Fermi surface of the compressed

G(x) =x 2/(2xa+6). metal can be different from that of the metal under
normal conditions. We take this into considera-

The exchange-correlation parameter 4 is given byS tion.

S1/(4 + ar,) , IV. TWO-PLANE-WAVE APPROXIMATION

where r, is the electron spacing radius defined by The evaluation of the double surface integral in
= -LZr 3 and a 2i0.025. (1) has been a major numerical obstacle in most

The screened pseudopotential form factor for of the calculations of the resistivity of polyvalent

aluminum is plotted in Fig. 1. In the same figure metals. Because of the complex geometry of the
we also show the corresponding quantity for the Fermi suface of these metals a large number of
compressed metal with .V/V o = 0.7. On plotting v surface-area elements is necessary to charac-
as a function of x we see that the node (where w terize the surface accurately. 10 2 For the high-
=0) moves to lower reduced wave vector as the temperature transport coefficients the problem
metal is compressed. Correspondingly the Fourier of the Fermi-surface anisotropy is less,4"5 and in
coefficients V,(111) and lP(200) are seen to in- view of this we have chosen to carry out the cal-
crease. While pseudopotential theory suggests culations by means of a two-plane-wave approxi-
that r. should be energy dependent, 9 the energy mation which has also been used by other authors

in similar model calculations.' - "4 Although at
some points on the Fermi surface three or even

02 |  four orthogonalized plane waves are needed to give
02 an adequate description of the finer distortions,"5

V, (a) the amount of surface requiring this more detailed
e j description is small compared with the total Fer-

00- -o, * 0- mi-surface area. Essentially, our approximation~05 ," 0,

treats each of the many Bragg planes in turn and.
calculates the contribution to the resistivity with

-02- the electronic levels described by the linear com-
. 0 Vo .,V bination of plane waves

" I ," -v~vo tI f) = sin6 e j 'Z* + cosOie i  0I- )7 ( )

-04 ' The total resistivity Is then the sum of the um-

klapp contributions of the individual reciprocal-

lattice vector (K) and the normal contribution.-061// Our numerical calculations show that the normal

contribution is only a small part of the total re-

sistivity atid for this it is quite adequate to use
-08. / the simple one- plane- wave treatment.

I ,," Consider the umklapp processes made possible
by transitions involving a particular reciprocal-

-, ". lattice vector R. The umklapp processes are
those for which the initial levels I, originate on

FIG. 1. Pseudopotential form factor of aluminum for the Fermi surface and the final levels E, end on the
VA'% = 1.0 and %'V,= 0.7. Screening by conduction elec-
trons (Eq. (10)1 the appropriate densities Is taken Into remapped surfaces, i.e.,
eeount. the empty-core rndlus r. Is 1.12ap. The E,- = - (12)

Ip

0 arrows mark the location of the reciproczzl-Iattlce rec-
10tors K * a, 1, 1) and (2, 0, 0). with in the first Brlllouln zone. Some umklapp
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Brillouin zone of the cubic structures guarantees
that throughout the zone the phonons have polari-
zations that are usuallyquite close to being purely

longitudinal or purely transverse. It thus seems
reasonable to replace the phonon dispersion curves
with one longitudinal branch and two identical
transverse branches with dependence on the mag-

knitude of 4 alone, these branches being appro-
priately weighted averages of the frequencies

k2 along the major symmetry axes. Implicit in this
is the subsequent replacement of the zone by the
Debye sphere. The individual phonon frequencies

BP are calculated from an eight-shell axially sym-

metric model with experimental force-constants
obtained from experiments at 300 'K." This pro-
cedure inevitably introduces errors into the final
result, but the uncertainties are not expected to
be large, especially if the main interest centers
on the way resistivity changes as a consequence
of the variation of the frequencies themselves.

With this approximation, the scaled longitudinal
and transverse matrix elements (squared) are

then given by

(2k) (3 ) ill ,

FIG. 2. Two possible umklapp processes are shown {q V, () (SIS2 + C1C,) + .Vq - RA)S2 CI

here in the single-Bragg-plane (BP) approximation (k
-k 2 ; k-') Note that the Fermi surface is divided "I( + )S C

up into three parts for computational purposes as de- - - K)SCIP (14)
scribed in the text.

and

processes are pictured in Fig. 2 where we also (2k )2(!S) 2,

see that the Fermi surface is split into two sec-

tions because of the finite value of vk. K 2[l - (.. )'][ ,,(q+ ,)S C.

The parameter 8 describing the electron levels
in (11) is given by - 1r( -K)Scj I,

tano = 77* sgn(Vk)(17+ 1)1/2 , where S, = sini and C, = cosO, with i = 1,2. Given
the trial function (4) the quantity [4,(k 2 ) - -t(k,)f ap-

with pearing in (1) is determined by

=2k [4 2,/ [4 ( ) _
x[R.. (K/2k,) - L(K,2k, )2], x = k/21kF .  (13) q2' 2[4 2 -R (C' ,) +K ( , I') .(5

= '+ 2.R c ' ) + K2(C, - C)72 . (15)
The (t) in (13) signify the band index, with (+) for
the second band and (-) for the first. If the band gaps are small (as in aluminum) then

The matrix element.11 required in (1) is in gen- only a small region of the Fermi sphere needs

eral given by to be described in the two-plane-wave formalism,
the rest being essentially free-electron-like. Con-

siderable computational effort can be saved if we

when the wave functions are normalized. Before divide up the first band into two parts (see Fig. 2),
we consider this further we will first describe the 1. and 4,, in which 1. is the part of the first band
approximations we make concerning the phonon where a one-plane-wave description would be ade-

frequencies and polarizations. With the excep- quate while 4, is the part that requires the two-

tion of those along the major symmetry axes, the plane-wave description (as determined by a suit-

phonons have polarizations that are neither pure ably chosen criterion"). The processes involving

longitudinal nor pure transverse. However, the initial states on 1, and final states on the remapped

large number of symmetry axes present in the part of 4 are essentially free-electron-like and
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will be dealt with separately. Contributions from f dL f d__ 2  ... (
processes involving II and 4, will then be comruted ., 2 j 2 (17)
by directly evaluating the double integral.

The double Fermi-surface integrals required for where the rest of the integrand has a somewhat

the evaluation of (1) thus have contributions from weaker dependence on the location on the Fermi

the normal processes (which are small in the surface. The ratio of

case of aluminum), umklapp processes in the two- f dsj fds2
plane-wave single-Bragg-plane approximation,,v, *"

1

and umklapp processes that can be considered asinvovingfre-eletronlik levlsto a corresponding quantity for the free-electron
involving free-electron-like levels. case is thus an approximation of the correction

factor required. Using inversion symmetry, we
V. APPLICATION TO COMPRESSED ALUMINUM have

As mentioned above, the phonon frequencies at (ds/'I) f(ds2 /.1,r) ,2 - r12

normal conditions (300 'K and zero pressure) are j(ds1/v') (dsovl,) - 1
generated by an a.xally symmetric force-constant

model. The effects of the volume change on the f(ds/v) fdsv
phonon frequencies themselves) can be calculated J=(ds1v)Jds'v 0  , (18)

in a straightforward manner from the dynamical where fds u/fdsO vO is just n/in.,p1 while (fds/v)/
matrices.""1 9 In the polyvalent metals it is well ( fds*/0) is commonly referred to as the specific-
known that such a calculation is computationally heat effective mass mi,/m. Combining this with
time consuming as a large number of terms is the factor (mno0 /n) 2 , we arrive at a total correction
needed for the dynamical matrices to converge. factorf= (mo0 ,/i)(m,/m). In t!.e two-plane-wave
We choose instead to scale all the frequencies with model mn,,, and mnh can be obtained without further
the bulk experimental Gr~ineisen parameter y approximation in closed forms:
(2.35 for aluminum20

), i.e.,
- ~ ~ ~ ~ i I 1)m 0 ,= K !V(K)l {[ (2.in 2V,(K,)

- (q, 0 = co.(q)(I + , ) (16) 2 / , A2

In (16) w(q, 1 is the phonon frequency of the wave 2., L 12w, 2w,
vec' r q at the compressed volume V and wo is where
the cbserved frequency at the zero-pressure vol-
ume V. Though a crude approximation for the W0=2[SSJ + 1,2 )/2

changes in the frequencies themselves, it should
be satisfactory for the quotient p(V)/p(V) involv- and
ing ratios of integrals accompanying such changes. w,=2[(SF+ P,-(K)] 2 + S.
A more realistic approach is to take into account
the changes in the elastic constants in the evalua- Further,
tion of the changes in the phonon frequencies."= 1 _ X l + X rX2I f

The numerical evaluation of Eq. (1) also involves m -4' -

the computation of the factor (nzop,/ 1
1

2 . From Eq.
(6) we see that this factor is a measure of the dis- where X=K/2 ,. These formulas then serve as an
tortions in the Fermi surface. On the other hand, indication of the accuracy of our numerical proce-
we note that in evaluating the umklapp contributions dure within the two-plane-wave model. The re-
to the double surface integral, the Fermi surface sults are listed in Table I. We note also that the
used is not the actual fully distorted Fermi sur- scaled correction factors, i.e.,f(r,) fr"c,), com-
face. For each particular Bragg plane (at, say, pare very well. The resistivity of aluminum as a
12) only the distortions associated with a given function of con-,pressed volume is plotted in Fig. 3.
VA() are taken into account. This amounts to Here we display the results using both the correc-
using a Fermi surface with an area Iarger than the tion factors from the closed form solutions (.)
actual one (in our two-plane-wave model, the ac- and those from the numerical calculations (f,).
tual Fermi surface would have distortions re- The equation of state of aluminum has been ob-
suiting from 14 Bragg planes). We can estimate tained by Friedli and Ashcroft. ' They examined
the combined effects of the necessary further c- most of the common crystal structures and con-
d,,ction in Fermi-surface area as follows.' We eluded that for the pressure range they considered
note that, with the trial function given by (4), the (up to and above 300 GPa) the fee structure is that
double surface integral in (1) takes the form of lowest calcula:ed energy. We can numerically

...O. ...



'1996 J. CIIEUNG AND N. W. ASIICROFT 20

TABLE I. Quantities mo0 tm and ,sh/m evaluated in the two-plane-wave model. Both
closed-form (analytical) and numerical results are listed. The quantityf is defined by

f= (mowt/m)('h/rn). (Note: r, 0 =2. 073.)

!Mooh / n ,n, /M f (r.)/If1-, 0

r s(a,) V/V O Analytical Numerical Analytical Numerical Analytical Numerical

2.073 1.00 1.370 1.305 0.985 0.987 1.00 1.00
2.001 0.90 1.644 1.561 0.976 0.979 1.19 1.18
1.924 0.80 2.070 1.910 0.964 0.966 1.48 1.43
1.841 0.70 2.619 2.552 0.947 0.949 1.98 1.88

eliminate r, between this equation of state and the Bridgman):
resistivity variation we obtain in this calculation
to arrive at a scaled resistivity curve which is A(/VPo A(R[R o+- 1 (20)

shown in Fig. 4. Unfortunately, we have not been 0
able to locate experimental data on the pressure With this equation we get 2.3 for the experimental

variation of the resistivity of crystalline alumi- value 25 of A(p/po)/A(ViV) and this should be

num. The data of Bridgman summarize the mea- compared with the theoretical result of 2.5 ob-

surement of relative rcsistance rather than the tained here.
relative resistivity. -3.2 4 However, we can get an
estimate of the experimental value of VI. DISCUSSION AND CONCLUSION

[(P/P°)/A(i'/Vd°V/Vox' Our calculations, though they describe quite well

from the Bridgman data by using the approximate the qualitative trend of the behavior of resistivity

equation for an isotropic cubic crystal (roughly under pressure (as compared with experiments at
applicable to the experimental arrangement of low pressures), do not yield particularly accurate

numerical results for the resistivity itself. At

to normal conditions the resistivity p(O) is overesti-
mated by 50 (the computed values are 4.2 and 4.0

1 0

e-L- P(P
090C-

09000

oece

080 "" ....I'*
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0 0 20 3o 40 50 s
FIG. 3. Scaled resistivity of aluminum as a function of PIGP*)

compressed volume at T - 300 °K In the single-Bragg- FIG. 4. Scaled resistivity of aluminum as a function
plane two-plane-wave approximation. The curve labelcd of pressure. The curves are obtained by numerically
f. is obtained by applying the Ferml-surface-area cor- eliminating the volume between the curves shown In Fig.
rection factor in closed form: the f curve is obtained 3 with the equation of state of aluminum. The equation
with the correction factor obtained numerically (see of state Is obtaied by the procedure described In Ref.
text). 3.
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O..Scm with the correction factorsf. andfr, re- a minimum as the metal is compressed. The
spectively) and is characteristic of the errors en- mechanisms that cause this minimum are not the
countered in the equivalent calculation in the liquid same as those believed to account for the resistiv-
state.' The discrepancy can be attributed to the ity minima in the alkali metals. In the latter case
approximations we have made and to the choice of the admixture of d states in the levels at the Fer-
trial function. The Fermi surface over which we mi energy is believed to be responsible, 23,26'-
perform our double surface integral is at best a while in the case of aluminum the minimum ap-
rough approximation of the real Fermi surface pears to be a manifestation of changes in the Fer-
which has a much more complex geometry. Our mic-surface geometry. In our simple model of
approximation of a single Bragg plane allows for the electron-ion pseudopotential under compres-
more transitions to be included as the Fermi sur- sion we see that for all the compressed volumes
face thus generated has a larger area than the real considered the reduced Fourier coefficients
Fermi surface. This additional surface is only v,(1ll)/S, and v,(200)/S, increase as the metal is
approximately accounted for in our treatment of compressed. These increases cause the reduc-
applying the correction factor (18). Another source tion in Fermi-surface area (as compared to the
of error can be traced to the replacement of the free-electron sphere) to increase from about 14%
phonon frequencies by three branches (one longi- to about 38% when the volume of the sample is re-
tudinal and two identical transverse) and the re- duced by 300. The values of the reduced Fourier
placement of the first Brillouin zone by a Debye coefficients and the Fermi surface area reduc-
sphere. This simplifies the problem but at the tions are listed in Table II.
same time discounts all the effects of phonon an- It is quite clear that a more careful treatment
isotropy. The errors introduced by using a single of the resistivity variation requires that the Fer-
Gruineisen parameter to describe the phonon fre- mi-surface distortions befidly taken into account.
quency changes will be averaged out to a certain If the Fermi-surface effects are included (as de-
extent (at least for small volume changes) as an scribed in Sec. V), we see that the simple picture
integral is performed to arrive at the resistivity, of a one-plane-wave treatment needs to be modi-
Furthermore, we note that the two-plane-wave fied. In addition to the (main) effect of reductions
approximation is not adequate for some electronic in resistivity stemming from increases in phonon
levels, especially those near the zone edges and frequencies 2' we have an offsetting effect from the
corners. The electronic levels near the symme- increase in the distortions of the Fermi surface
try point IV, for instance, require four plane waves which ultimately reverses the trend. The net cor-
for an adequate characterization. A realistic de- rection factor that should be applied for these dis-
scription of the electronic levels is attempted only tortions should be
near the Bragg plane under consideration-1'nd f= )
this is only done crudely-a simplification ' at in-
evitably introduces errors into our results. We instead of the (t.n/m)" appearing in Eq. (1) be-
note, however, that the fraction of the Fermi sur- cause of a corresponding reduction in the region
face that is close to a Bragg plane is already of integration for the double surface integral in
small. Thus, we can expect that the fraction that Eq. (1). As inhn remains near unity for all the
lies near the intersection of two or three of these values of r, considered. we see that the correction
Bragg planes to be smaller still. Further Bragg factor is reflectedby the increase (as a functionof
planes [the next class is (220)) are excluded from compression) of the optical mass. Thetwoeffects
our consideration as they lie outside the Fermi together cause a resistivity minimum at V1' Vo
sphere. The inadequacy of the trial function we -0.8 which would be absent in the one-plane-wave
use necessarily leads to overestimation of the re- treatment.
sisti vity.

However, we believe our results for the scaled TABLE II. P.educed Fourier coefficient r#(ll)/ ¢ and

quantity have quantitative validity in the descrip- 1.0(200)/11F and t'-e reduction in Fermi-surface area as a
function of compressed volume. The two-plane-wavetion they give of the changes in the resistivity as model is used to compute the Fermi-surface (FS area

pressure is applied, the previous objections not- reductions.
withstanding. The reason is that when we consider
the changes brought about by the application of /,2fr) /V, : , .iiii .4,r 200) "cF FS Reduction
pressure then the relative uncertainties in each of
the considerations should be considerably re- 2.073 1.00 o.,0o. 0.0949 14 .

duced. 2.001 0.90 0.(.322 (.1144 22%
S1.924 0.60 0.( 5-5 0.1350 29 c

The results of our calculation are somewhat in- 1.94 0.70 0.(- 0.1350 29'
teresting in that the resistivity of aluminum shows 1.84 0.70 0.00 0.1.4 3S(1

- a - - - ..-------- - -
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While the validity of the simple one-plane-wave sistivity to decrease as a function of pressure
treatment can be justified for high temperatures and we would expect the pressure coefficient of
and zero pressure, we have found that in dealing Pb to be larger than the result from a one-plane-
with the compressed metal a more realistic treat- wave calculation. Thus, for the polyvalent metals
ment taking into consideration the Fermi-surface our single-Bragg-plane and two-plane-wave ap-
distortions is plainly required. As discussed proximation is a first step in taking these distor-
above, this differs from the situation in the alkali tions into account and already shows that among

metals where the distortions in the Fermi surface the simple metals some qualitatively different ef-
are second-order effects. As another example of fects can be expected.
a polyvalent metal we may consider Pb whose AKOLDMNFourier coefficients (or rather their magnitudes)

are expected to dccreose as the metal is corn- This research has been supported by the United
pressed.3" Therefore, both the Fermi-surface States Army Research Office, Research Triangle

distortion (as reflected in the optical mass) and Park, North Carolina, under Grant No. DAAG29-
the increase in phonon frequencies cause the re- 78-G-0040.
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Core polarization and the equation of state of potassium
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We calculate the zero-temperature equation of state or potassium with a model Hamil-
tonian that includes core-polarization effects. Density fluctuations in the ion cores lead to
van der Waals interactions that are dynamically screened by the valence electrons. They
also lead to screening of other static interactions, effects that are incorporated through the
use of a background dielectric function e,(q). Inclusion of core-polarization effects yields
significant improvement between the theoretical and experimental equations of state, partic-
ularly at high pressures.

I. INTRODUCTION that the collective core-core excitations give rise to
screened polarization waves, and the lowest-order

In calculations of the'thermodynamic functions dispersion forces associated with these waves are the
of the simple metals it is common to assume that screened van der Waals interactions. It was also
core-polarization effects can be neglected, an as- shown that in addition to participating in physical
sumption that is normally justified on the grounds processes involving collective excitation and dynam-
that the electrons in the corresponding ions are ic screening, the polarizable ions screen all the static
tightly bound and in consequence not significantly interactions. At the microscopic level the system of
polarizable. It then follows that the dispersion ions constitutes an inhomogeneous dielectric which
forces and the effects of any background dielectric for long-ranged interactions in situations of high
shielding associated with the internal structure of symmetry may be reasonably well approximated by
the ions should be small, at least in comparison a dielectric continuum with dielectric function e,(q).
with the much stronger Coulomb interactions and In this paper we shall apply the principal results of

electron-gas properties. Under normal conditions I to be the case of potassium which has a rather
these assumptions are usually valid: The screened substantial ionic polarizability (see Table II of Ref.
van der Waals interactions, for example, produce 1). It also has a high compressibility which makes

only a slight softening of the replusive part of the it well suited to the present calculation.
pseudopotential-derived ion-ion potential.' At high The paper is orgainized as follows: In Sec. II, the
pressures, however, where interionic separations are key results for the total energy of a simple metal
much reduced, the softening of such potentials can with polarizable ions are restated. In Sec. III we in-
have noticeable effects, as we shall see here. In ad- torduce the additional approximation needed to

dition, the likely importance of the background evaluate the zero-temperature isotherm. This re-
screening can be gauged by examining the quantity quires us to address the form of the static back-
, (0) =z I + 4-,, nia, where a is an ionic polarizabil- ground dielectric function ec(q) for a dielectric con-

ity and n1 is the ionic number density. In the alkali tinuum representing the ions, as well as the atomic
metal series this does not depart appreciably from polarizabilities themselves. The results are discussed

unity (the range is about 1.01 - 1.27); nevertheless, in Sec. IV.
such departures can lead to quite significant correc- At high compression the effects we are discussing
tions to the various terms comprising the total ener- are quite significant, as will be seen. It should be
gy of a metal,2 particularly at high pressure where noted here that by ignoring core-polarization effects
nj has been increased, entirely it is still quite possible to obtain a detailed

In a previous paper3 (referred to as I) we derived quantitative description of the elastic properties of
a model Hamiltonian to treat the problem of a sys- the alkali metals 4' ' using pseudopotential methods.
tem of interacting dipoles and electrons for use in We shall see below that the explanation for this
the calculation of thermodynamic and structural minor paradox is simply the observation that for
properties of simple metals. It was shown there modest compressions the correction terms arisingI 24 1636 Ce 1981 The American Physical Society

MI
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from core polarization effects can be almost entirely As described in I the terms here have the following

absorbed into the standard zero pressure fitting pro- meaning: Term (1a) is the Hamiltonian of an in-
cedure in which the aggregate of all long-wavelength teracting electron gas in a neutralizing dielectric
terms is adjusted to an experimental datum. The continuum with dielectric constant Ec(q). The .__

volume dependence of the core-polarization terms valence-electron density operator is pw(q4)=-e' q"J,

is, however, sufficiently different that under more the Coulomb interaction is v,(q) = 4e 2 /q 2

extreme circumstances, such as the treatment of Term 0lb) is a characteristic pseudopotential form
shock Hugoniots and the determination of for the interaction between the valence electrons and
Griineisen parameters, this procedure may require the ions, but modified here to incorporate the effects
reexamination, of the dielectric continuum. The pseudopotential

up,(q) used in (lb) is assumed local; note that the
1i. GROUND-STATE ENERGY ion density operator is '(4) = T e 'eI . Term

OF A SIMPLE METAL (Ic) is the Coulomb energy of point charges, also in

We shall neglect the energy associated with the the dielectric continuum. The terms in (Id) are,
nuclear degrees of freedom5: The Hamiltonian for a respectively, the sum of all q = 0 terms and the
simple metal of valence Z and of volume fl whose screened van der Waals interactions. As is well
ions are polarizable can then be written known, E0 has an inverse volume dependence6: If

i C(q) (Ian. is the mean valence electron density, it can be
H=2- m  ,,(a written as

+ ?,, N-- i(4 p (q 4( ) (Ib) E 0  , [L (2)

Zlv,(q) , where
+ jVoN (q) (-q)- N] (Ic) rsao=(3/4rn,) 11 3

+ NZEO + y '#L R - R') (Id) The screened fluctuating dipole interaction between
ions is1' 7

= du a2 -(riu) -8v(riu) (3)
21r aoi I r at J

r

where and

v(riu)= fA . (. ) E; $l (q v,- -'-" - I]
(21r) (q,iu)2nv(q)

the quantity E,,(q,c) being the wave-number- and (4)

frequency-dependent dielectric function of the in- and where SA) is the static structure factor of the
teracting electron gas. interacting electron gas; (b) the corrected Madelung

Perturbation theory can be applied in a straight- 9
forward manner to (I). The contributions to the energy
ground-state energy are then: (a) the corrected ener- E. = Ev + EMc , (5a)
gy of the interacting electron gas, which in Ry per where
electron, is' where

E4=Ee$+E; (4a) EM r, (Sb)

where EX = L Zv(q)S(q)fej'(q) - 1] , (Sc)

2.21 0.916 + Ecorr 9 (4b) -io

E , 1 r and S ,, is the ensemble averaged ionic structure

- R, - -r
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factor; (c) the corrected band-structure energy Ill. ZERO-TEMPERATURE ISOTHERM

E(2) _1 NZ. 2 q) If F is the Helmholtz free energy of a system of
-=i - l X(q)Sj,(q) N particles at temperature T, then the pressure is

NZ fl %(q) SqfFisteemhtzfeenryoassem f# IV(q) I p = - (aF/3f8)T.v. At T = 0, F = E, which is

(6) given by (7). The various contributions to E require
the averaged core-dielectric function e,(q), the

where %X(q) is the first-order polarizability of the in- frequency-dependent valence-electron dielectric
teracting electron gas; and d) the aggregate of all function c(q,w), the f~equency-dependent ionic po-
q = 0 terms, as given by (2). If these terms are aug- larizability a(w0), and the valence-electron static
mented by the screened fluctuating dipole interac- response functions.
tions, the total static lattice ground-state energy can Provided the background dielectric constant
be written e,(q = 0) is reasonably close to unity, as is the case

here, we may neglect local-field corrections and
E(r)= NZ(E,, + Ek + E s" + Eo) write, as earlier

e, (q) = I + 4-,.a(O) (q --+ 0) .(8)

+ T i (R - R') - (7) In the opposite limit (q > 2rr/d, where d is an ionic

diameter) we make a local-density approximation,
Here the band-structure energy has been calculated taking the large wave-vector limit of the Lindhard
to second order in the electron-ion pseudopotential. result'0

For monovalent metals (such as potassium) this + [ 14(9
neglect of higher-order band-structure energy terms a(q) 1+ 3,k (9)
is satisfactory.' 0 The corrections associated with 7Fao Iq

e,(q) are also calculated within a linear response Here k- is a characteristic Fermi wave vector corre-
framework, again a reasonable approximation since sponding to a locally uniforn core-electron density
the effects we are incorporating here are, in any n. Let x = (q/ 2 kF); then for Z = 1, a simple in-
event, fairly small. trpolation between (8) and (9) is

S= I + 4-nIa(O) 1+41 J[4.4 !0
n, a 0

where a(0) = a(w = 0) and k 3= 3-, (v refers to the valence electrons). This form for e€(q) is similar to
the wave-vector-dependent dielectric functions used in semiconductors and other narrow-gap insulators." It is
plotted in Fig. I for the choice' 2 a(0) = 0.9 k ? and' 3 n, = 8ni.

To evaluate the correction to the standard electron-gas energy, we note that the second term of (4) can be
identified as one-body and two-body contributions, that is,

2n #0 vcv () (q) I (q)

1 g(q) l -]v2(q)-1  1 (12)

g,-2fl j-00o P v,(q IE,(q

For an empty-core pseudopotential"4 with core radius r, and the interpolation form (10), the first of these can
be evaluated in closed form and the result is (in rydbergs)

- (kRFao)(G/2a3 )(l + e-'"Vi(cosV.as + sinv2as)] (13)

with and

G =(n/n,)(3kFao) , s = 2kFr.

a 4 = G [ + 4nja(0)]/4-,nja(0) , To determine ( 2) it is sufficiently accurate to take

i _________________
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(a) r-4.86 where

x =ql2kpF

Since e,(x) is already close to unity, it is reasonable
to ignore further corrections to the correlation ener-
gy arising form the modification of the effective
electron-electron interaction because of core-

oom 2 3 4 polarization effects.
We turn now to the energy of the screened van

tb) s. 4.10 der Waals interactions: Its determination requires
0.2- the frequency-dependent atomic and electron-gas

polarizabilities. Again, since this contribution is not
a major one, we may make reasonable approxima-
tions in both quantities. For the atomic polarizabii-

o10- ty we take the usual Lorentz form

a(w) = a(0)[I - (W10)2 ]- , (15)

where wo is a characteristic frequency (estimated to
be the equivalent of 47 eV for potassiumt6). The

0 1 2 3 -q/2k,4 wave-vector- and frequency-dependent dielectric

FIG. I. Interpolated form for E,(q) for potassium. function for the valence electrons is taken to have

The dotted curves show the high- and low-q limits of the simple form"

e4(q). The solid curve is from Eq. (10). (a) r, = 4.86 e(q,w) = I + k 2 /(q 2 - k 2 C0216)
2 ) (16)

(lflo = 1.0); (b) r, 4.10 (-l/flo = 0.6).

where km is the Thomas-Fermi wave vector. No-
the Hartree-Fock result's for the electron-gas struc- tice that this leads to the familiar q --. 0 (for w - 0)
ture factor S,,(q), i.e., and w --0 (for q = 0) limits. The point is that the 0

S(q)=Ix- x (x <) use of (15) and (16) in conjunction with (3) gives
NZEr,,i XL(R)

(14) R:o

SCs(q) = I (x < 1) where

e 2 3&)0  0 1ao 16

2aL(R) - 2o 4(e 2/2ao) [1 + (W,/Io)3 ] a1

? t.1 I f dy{ a2--o lf,(R,iu) = - ,(17)

+ 2(e/2ao) 21r a, (

with

Fi(R,iu) -[1 + (u/p )2]-'cosh4Qr e-2Q)t

x (6 0 I+l 2Qao I+o(Qao)2 [L 1J4 + 4(QO I3 f 1'+ (Qao)4  [ I

Here the quantity Q is defined by which leads to

tie kF a t l : t r o0.916 + Z"/2 'a.v) + 0.031r ()

The sum in (17) can be evaluated with relatively lit- 9

parameter a in EU by the zero-pressure condition0
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where E' refers to the sum of the energy contribu- volume dependence). Figure 3 and Table II sum-
tions other than those having their origin in marize the results of such a procedure. A direct
electron-gas and electrostatic terms. In the case of comparison of these two sets of results show that
potassium the zero-pressure electron spacing param- though there is a qualitative similarity (and quantita-
eter"s is r5o = 4.860. tive to within 30%) the effects of core polarization

The total energy of bcc potassium can now be ob- are not small in potassium. The comparison also
tained by adding the contributions given by Eqs. shows that to the extent that the difference in ener-
(4)- (6) and (17) with a chosen to give the correct gies computed by the two different methods can be
zero-pressure density, and subsequently held fixed. assumed inversely volume dependent, much of the
The various contributions to the energy and pressure difference can be absorbed in E 0.
are listed ;n Table I for a sequence of volume
compressions. The T = 0 equation of state is IV. DISCUSSION
shown in Fig. 2 and compared there with the low-

temperature experimental results of Monfort and As might have been anticipated from the fact that
Swenson.19 Above 20 kbar the comparison is made the potassium ion is quite polarizable, we find that
to an extrapolation achieved using 9  core-polarization effects in postassium metal contri-

Pr= o(fl) = 37.0[(no/f1) ' ss - 1]/3.85 (19) bute noticeably to its thermodynamic functions, par-
ticularly at high pressures. We now examine the

in units of kbar. It is clear from Fig. 2 that the degree to which this conclusion may depend on the
agreement between theory ind experiment is satis- approximations and numerical procedures adopted.
factory. First, the interpolation form used for cE(q,) is plausi-

The importance of core-polarization contributions ble on physical grounds, is convenient for numerical
can be judged by comparing these results with core reasons, but is nevertheless still approximate. On
effects neglected altogether. In practice this is the other hand, much of the contribution from these
(unintentionally) carried out by the fitting procedure terms originates with the small-q contribution where
in which all q = 0 terms are assumed incorporated the background dielectric constant is best known.
in the aggregate E0. Since the actual zero pressure In the same long-wavelength limit the dipole ap-
density is determined by all contributions to the en- proximation used throughout is expected to be valid
ergy, the explicit neglect of core polarization is and so is the standard procedure for evaluating
equivalent to assuming their implicit incorporation local-field effects. 20 When wavelengths become
in Eo (and assigning them thereby an inverse comparable to the spatial extent of the core-electron

TABLE I. Computed energy and pressure for potassium as a function of volume with core-polarization effects taken
into account. The various quantities are defined in the text. n0 is the zero-pressure volume.

Energy (Ry/electron)
fl/no E5  EM E0 ELr E, E, Ew E,1(

1.0 -0.1610 -0.3687 0.2793 -0.1003 -0.0149 -0.0557 -0.0012 -0.422S
0.9 -0.1620 -0.3819 0.3104 -0.1085 -0.0171 -0.0609 -0.0015 -0.4215
0.8 -0.1628 -0.3972 0.3492 -0.1184 -0.0199 -0.0673 -0.0019 -0.4183
0.7 -0.1633 -0.4152 0.3991 -0.1302 -0.0237 -0.0751 -0.0024 -0.4108
0.6 -0.1633 -0.4371 0.4656 -1448 -0.0287 -0.0852 -0.0032 -0.3967

Pressure (kbar)
fl/fl0  P(E.5 + E. + Eo) P(Edw) P(EM,) P(Eo) P(E,) plot P"

1.0 44.6 -0.7 -23.3 -6.0 -14.5 0.0 0.0
0.9 59.3 - 1.0 -27.5 -7.6 - 17.5 5.7 4.8
0.8 80.7 -1.3 -32.8 -9.9 -21.5 15.3 13.1
0.7 113.0 -2.0 -40.0 - 13.1 -2.0. 30.9 (28.3)

,' 0.6 164.5 -3.0 -49.s -18.1 -3.5.2 58..5 (59.1)
'Rcference 19. Numbers in parentheses are obtained by extrapolation.
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60 ft can be expected to be weak functions of densi.

ty. 2' Furthermore, it is well known that a nonlocal
pseudopotential is required for a correct decription

POWkv of band structure of potassium (there are empty d-
symmetry bands lying above the Fermi energy22).
Of the terms most affected by such considerations,
the band.structure energy is foremost. Nevertheless,
once such nonlocal contributions are averaged, as in
the construction of the total energy, the resulting
uncertainties in the equation of state are not great.

The reason is that the contributions to the equation
as, 09, o, 0, of state from Egs are - 6 kbar at t2/Nl = 1, and

Fu9 - IS kbar at fl/fl 0  - 0.6. If EBS were complete-FIG. 2. Comparison of computed equation of state of ly omnitted, then at p 0 , E0 would acquire (by vir-
potassium (core-polarization effects included) with the ex- rue of the fitting procedure) an additional term to
perimentally determined function. The dotted portion of cancel the - 6 kbar. Since E0 is assigned an inverse
the experimental curve is obtained by extrapolation of volume dependence, it would yield - 17 kbar at
Eq. (32) (Ref. 19). n/no 0.6, thus leading to a total error of only I

kbar. At very high pressures, the d bands which are
charge distribution, however, the description in the major source of this nonlocality, might actually
terms of translationally invariant core-electron intersect the Fermi surface, a phenomenon ob-
response functions is not strictly justified. For such served 24 in Cs at around 42.5 kbar. The nearly-
wavelengths it is the case that the dielectric function free-electron approach, on which our calculations
approaches unity quite closely so that though the in- have been based, will then be invalidated. We note
terpolation form we use [Eq. (10)] lacks the expect- that in the experimentally determined equation of
ed symmetry, the error thereby introduced is cer- state (at room temperature) no such transition of
tainly small. this nature has so far been observed for pressure up

It is also worth noting that the parameters a(0) and to 50 kbar.19'25 All of these effects may need ulti- ".

TABLE I. Computed energy and pressure for potassium as a function of volume (core po-
larization effects neglected).

Energy (Ry/electron)n'/no Eeg +EM + Eo S

1.0 -0.3702 -0.0166 -0.3868
0.9 -0.3667 -0.0195 -0.3862
0.8 -0.3607 -0.0233 -0.3840
0.7 -0.3507 -0.0283 -0.3790
0.6 -0.3346 -0.0348 -0.3694

Pressure (kbar)
n/no P(Eq + EM + Eo) P(Es)) Plo P.W.

1.0 7.9 -7.9 0.0 0.0
0.9 14.1 -10.2 3.9 4.8
0.8 23.4 -13.3 10.2 13.1
0.7 38.2 - 17.4 20.8 (28.3)
0.6 62.7 -22.8 39.9 (59.1)

'Reference 19. Numbers in parentheses are obtained by extrapolation. Q
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mately further consideration, but within a few kbar

will not alter the principal conclusion, namely that
at high pressure core-polarization effects in potassi-

40, um appreciably modify its equation of state.

20.
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